Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.062
1.
Cells ; 13(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38727281

This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.


Induced Pluripotent Stem Cells , Organoids , Organoids/pathology , Humans , Induced Pluripotent Stem Cells/cytology , Animals , Neuropathology/methods , Regenerative Medicine/methods , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Cell Differentiation
2.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727280

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.


Amnion , Cell Differentiation , Chondrogenesis , Humans , Amnion/cytology , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Regenerative Medicine/methods , Tissue Engineering/methods
3.
Cells ; 13(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38727315

Mesenchymal stem cells (MSCs) have garnered significant interest in the field of regenerative medicine for their ability to potentially treat various diseases, especially neurodegenerative disorders [...].


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Animals , Regenerative Medicine/methods
4.
Arch Dermatol Res ; 316(5): 147, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698273

Mohs Micrographic Surgery (MMS) is effective for treating common cutaneous malignancies, but complex repairs may often present challenges for reconstruction. This paper explores the potential of three-dimensional (3D) bioprinting in MMS, offering superior outcomes compared to traditional methods. 3D printing technologies show promise in advancing skin regeneration and refining surgical techniques in dermatologic surgery. A PubMed search was conducted using the following keywords: "Three-dimensional bioprinting" OR "3-D printing" AND "Mohs" OR "Mohs surgery" OR "Surgery." Peer-reviewed English articles discussing medical applications of 3D bioprinting were included, while non-peer-reviewed and non-English articles were excluded. Patients using 3D MMS models had lower anxiety scores (3.00 to 1.7, p < 0.0001) and higher knowledge assessment scores (5.59 or 93.25% correct responses), indicating better understanding of their procedure. Surgical residents using 3D models demonstrated improved proficiency in flap reconstructions (p = 0.002) and knowledge assessment (p = 0.001). Additionally, 3D printing offers personalized patient care through tailored surgical guides and anatomical models, reducing intraoperative time while enhancing surgical. Concurrently, efforts in tissue engineering and regenerative medicine are being explored as potential alternatives to address organ donor shortages, eliminating autografting needs. However, challenges like limited training and technological constraints persist. Integrating optical coherence tomography with 3D bioprinting may expedite grafting, but challenges remain in pre-printing grafts for complex cases. Regulatory and ethical considerations are paramount for patient safety, and further research is needed to understand long-term effects and cost-effectiveness. While promising, significant advancements are necessary for full utilization in MMS.


Bioprinting , Mohs Surgery , Printing, Three-Dimensional , Skin Neoplasms , Humans , Bioprinting/methods , Mohs Surgery/methods , Skin Neoplasms/surgery , Tissue Engineering/methods , Models, Anatomic , Plastic Surgery Procedures/methods , Plastic Surgery Procedures/instrumentation , Surgical Flaps , Skin , Regenerative Medicine/methods
5.
Biofabrication ; 16(3)2024 May 15.
Article En | MEDLINE | ID: mdl-38697093

Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.


Bioprinting , Organoids , Regenerative Medicine , Tissue Engineering , Organoids/cytology , Humans , Bioprinting/methods , Tissue Engineering/methods , Animals , Regenerative Medicine/methods , Ink
6.
Article En | MEDLINE | ID: mdl-38723788

The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Extracellular Matrix , Regenerative Medicine , Humans , Extracellular Matrix/metabolism , Animals , Tissue Engineering , Central Nervous System , Nerve Regeneration
7.
Cryo Letters ; 45(3): 149-157, 2024.
Article En | MEDLINE | ID: mdl-38709186

BACKGROUND: The industrial scale cryo-storage of raw tissue materials requires a robust, low-cost and easy-to-operate method that can facilitate the down-stream process. OBJECTIVE: The study was aimed to develop the multifunctional protective solutions (MPS) for transportation at ambient conditions and also subsequent cryo-storage below -20 degree C of raw porcine hides for tissue engineering and regenerative medicine. MATERIALS AND METHODS: Protective solutions with antimicrobial activity and proteinase-inhibiting activity were developed and tested for its efficacy in preserving the extracellular matrix of porcine dermis from microbial spoilage, proteolytic degradation, freeze damage and excessive dehydration during shipping and cryo-storage. The MPSs contained phosphate-buffered saline with ethylene diamine tetra acetic acid (EDTA) added as chelator and proteinase inhibitor, as well as glycerol or maltodextrin (M180) as cryoprotectants. RESULTS: MPSs prepared with EDTA and glycerol or M180 had significant antimicrobial activity and proteinase-inhibiting activity during the period of shipping and handling. Glycerol and M180 prevented eutectic salt precipitation and excessive freeze dehydration upon cryo-storage of porcine hides. Without glycerol or M180, hides could be freeze-dehydrated to the low hydration at ~0.4 g/g dw, and formed irreversible plications after freezing. A critical hydration (0.8~0.9 g/g dw) was observed for the extracellular matrix of porcine dermis, and dehydration to a lower level could impose enormous stress and potential damage. The soaking of porcine hides in MPSs decreased water content as glycerol and M180 entered into dermis. Upon equilibration, the glycerol content in the tissue was about 94% of the incubating glycerol solution, but the M180 content in the tissue was only about 50% of the incubating M180 solution, indicating that M180 did not get into the entire aqueous domain within dermis. MPSs reduced ice formation and increased the unfrozen water content of porcine raw hides upon cryo-storage. CONCLUSION: MPSs prepared with EDTA and glycerol or M180 have antimicrobial activity and proteinase-inhibiting activity, which can be used for transportation and cryo-storage of raw hides at the industrial scale. Glycerol at 7.5% w/v and M180 at 20% w/v were sufficient to prevent freeze damage and excessive freeze dehydration. Doi.org/10.54680/fr24310110312.


Cryopreservation , Cryoprotective Agents , Regenerative Medicine , Tissue Engineering , Animals , Regenerative Medicine/methods , Swine , Tissue Engineering/methods , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Edetic Acid/chemistry , Edetic Acid/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects
8.
Sports Med Arthrosc Rev ; 32(1): 46-50, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38695503

Rotator cuff (RC) injuries include a wide range of pathologic states. Athletes are perhaps the most susceptible to RC injuries ranging from tendinopathy to partial or full-thickness tears, due to functional overload and repetitive movements, causing abstention from sports for long periods. Regenerative medicine keeps giving us multiple choices to fight the disability caused by these pathologies. A literature search was performed, and findings related to the structure-function of rotator cuff units, pathophysiology of injuries, regenerative medicine treatments, and future strategies were outlined. Platelet-rich plasma (PRP) has a greater number of articles and clinical trials, accompanied by stem cells progenitor, prolotherapy, and new approaches such as microfragmented adipose tissue and exosomes. RC injuries in athletes can cause pain, functional impotence, and the risk of recurrence, and can lead them to stop playing sports. Regenerative medicine offers a range of treatments, but some of them need further studies to underline their actual validity.


Athletic Injuries , Platelet-Rich Plasma , Regenerative Medicine , Rotator Cuff Injuries , Humans , Rotator Cuff Injuries/therapy , Athletic Injuries/therapy , Prolotherapy , Adipose Tissue , Stem Cell Transplantation
9.
Nihon Yakurigaku Zasshi ; 159(3): 138-143, 2024.
Article Ja | MEDLINE | ID: mdl-38692875

Japan Tissue Engineering Co., Ltd., J-TEC, was launched in 1999 to industrialize regenerative medicine in Japan. We developed the first regenerative medicine product, JACE (autologous cultured epidermis), which received PMDA approval for treating serious burns in 2007. Then, JACC (autologous cultured cartilage), the second product, was approved in 2012 for efficacy on traumatic cartilage defects. In 2014, the Pharmaceutical Affairs Law was revised to the Pharmaceutical and Medical Device Act, and regenerative medicine products, including gene therapies, were newly classified to accelerate productization. Subsequently, Nepic (autologous cultured corneal epithelium) and Ocural (autologous cultured oral mucosal epithelium) for epithelialization of limbal stem cell deficiencies in ophthalmology were approved in 2020 and 2021, respectively. Furthermore, a new product, JACEMIN (autologous cultured epidermis maintaining melanocyte) for vitiligo treatment was approved in 2023. We have developed five products of regenerative medicine that construct human tissues to graft rather than injectable cell suspensions like drugs. To develop regenerative medicine products, it is necessary to ensure the safety of raw materials, standardize the cultivation process, examine cell characteristics on GLP tests, construct transportation methods, build GCTP facilities, and conduct clinical trials on GCP. Re-examinations of JACE for serious burns and JACC for cartilage defects were completed after 7 years of all-case postmarketing surveillance. The commercialization of these products has become a benchmark for domestic regulation and has induced the development of a regenerative medicine industry promoted by Japan.


Regenerative Medicine , Tissue Engineering , Humans , Japan
10.
Nihon Yakurigaku Zasshi ; 159(3): 144-149, 2024.
Article Ja | MEDLINE | ID: mdl-38692876

We have been making 3D tissues consist of cells only, based on the corporate philosophy of "contributing to dramatic advances in medical care through the practical application of innovative 3D cell stacking technology." Currently, in the field of regenerative medicine, we are working toward obtaining approval from the Ministry of Health, Labor and Welfare and commercializing large artificial organs that are made from patients' own cells and have functions such as nerve regeneration, osteochondral regeneration, and blood vessels. On the other hand, this three-dimensional cell stacking technology can be extended to technology for culturing cells in an environment similar to the human body, and is expected to serve as a new methodology for evaluating the effects of new products in various fields on living organisms. Therefore, we are planning a business to provide developers of pharmaceuticals, foods, cosmetics, etc. with a small device called "Functional Cell Device (FCD)" that reproduces some of the functions of human organs outside the body. As the first step, we have developed a three-dimensional liver construct (3D mini-liver). The in vitro human liver model has a wide range of usage, such as evaluation of hepatotoxicity of drugs, elucidation of drug metabolism mechanism, and model of liver disease. In this report, we will outline it together with actual examples in regenerative medicine.


Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering , Humans , Biological Science Disciplines , Animals
11.
Mo Med ; 121(2): 170-176, 2024.
Article En | MEDLINE | ID: mdl-38694604

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has emerged as a powerful gene editing technology that is revolutionizing biomedical research and clinical medicine. The CRISPR system allows scientists to rewrite the genetic code in virtually any organism. This review provides a comprehensive overview of CRISPR and its clinical applications. We first introduce the CRISPR system and explain how it works as a gene editing tool. We then highlight current and potential clinical uses of CRISPR in areas such as genetic disorders, infectious diseases, cancer, and regenerative medicine. Challenges that need to be addressed for the successful translation of CRISPR to the clinic are also discussed. Overall, CRISPR holds great promise to advance precision medicine, but ongoing research is still required to optimize delivery, efficacy, and safety.


CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Neoplasms/genetics , Neoplasms/therapy , Genetic Therapy/methods , Genetic Therapy/trends , Clustered Regularly Interspaced Short Palindromic Repeats , Regenerative Medicine/methods , Regenerative Medicine/trends , Precision Medicine/methods , Precision Medicine/trends
12.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732198

Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.


Fractures, Compression , Osteoporotic Fractures , Regenerative Medicine , Spinal Fractures , Humans , Spinal Fractures/therapy , Fractures, Compression/therapy , Osteoporotic Fractures/therapy , Regenerative Medicine/methods , Bone Regeneration , Animals , Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology
13.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732231

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Biocompatible Materials , Gelatin , Hydrogels , Regenerative Medicine , Tissue Scaffolds , Gelatin/chemistry , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Humans , Tissue Engineering/methods , Cross-Linking Reagents/chemistry
14.
Swiss Dent J ; 134(1): 144-157, 2024 Apr 05.
Article De | MEDLINE | ID: mdl-38741457

The clinical impact of platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF®) respectively has been studied extensively in the field of regenerative dentistry during the last two decades. Literature supports evidence for additional benefits in regenerative periodontal therapy, alveolar ridge preservation, management of extraction sockets, implantology including guided bone regeneration as well as defect management in oral surgery. Regarding gingival wound healing and soft tissue regeneration, there is sufficient evidence for their positive effects which have been confirmed in several systematic reviews. The effects seem less clear in conjunction with osseous regenerative treatments, where the inter-study heterogenity in terms of different PRF-protocols, indications and application forms might hinder a systematic comparison. Nevertheless there is evidence that PRF might have beneficial effects on hard-tissue or its regeneration respectively.For being able to facilitate conclusions in systematic reviews, precise reporting of the used PRF-protocols is mandatory for future (clinical) research in the field of autologous platelet concentrates.


Platelet-Rich Fibrin , Platelet-Rich Plasma , Humans , Guided Tissue Regeneration, Periodontal/methods , Blood Platelets/physiology , Bone Regeneration/physiology , Bone Regeneration/drug effects , Wound Healing/physiology , Wound Healing/drug effects , Regenerative Medicine/methods
15.
J Biomed Sci ; 31(1): 47, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724973

The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.


Cell- and Tissue-Based Therapy , Induced Pluripotent Stem Cells , Precision Medicine , Humans , Precision Medicine/methods , Induced Pluripotent Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Drug Evaluation, Preclinical/methods , Urine/cytology , Regenerative Medicine/methods
16.
Vestn Oftalmol ; 140(2. Vyp. 2): 158-165, 2024.
Article Ru | MEDLINE | ID: mdl-38739146

The lacrimal gland (LG) is a tubuloacinar exocrine gland composed of acinar, ductal, and myoepithelial cells. Three-dimensional distribution of acinar lobules, ducts, and myoepithelial cells is necessary for the effective functioning of the organ. LG is the main organ of immune surveillance of the ocular surface system. The embryogenesis of the gland is regulated by the interaction of genetic mechanisms, internal epigenetic (enzyme systems, hormones) and exogenous factors. There is no doubt that there is a clear genetic program for the implementation of the complex process of embryonic development. The mechanisms regulating LG organogenesis initiate the work of a huge number of structural oncogenes, transcription and growth factors, etc. Studying the expression and selective activity of regulatory genes during organ development, their participation in the differentiation of different cell types is a current trend at the nexus of clinical genetics, molecular biology, embryology and immunocytochemistry. Due to its relatively simple structure and accessibility, human LG is a suitable object for potential application in regenerative medicine. Development of a universal protocol for obtaining functional differentiated secretory epithelium of LG capable of expressing tissue-specific markers is an urgent task. Determining the nature and origin of stem cells and progenitor cells will allow the isolation and multiplication of these cells in culture. After obtaining a functionally active culture of LG cells, it is possible to create a model of autoimmune diseases.


Lacrimal Apparatus Diseases , Lacrimal Apparatus , Regenerative Medicine , Humans , Regenerative Medicine/methods , Lacrimal Apparatus/embryology , Lacrimal Apparatus/physiology , Lacrimal Apparatus Diseases/therapy , Lacrimal Apparatus Diseases/physiopathology , Cell Differentiation/physiology
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732156

During the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...].


Mesenchymal Stem Cells , Regeneration , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Animals , Mesenchymal Stem Cell Transplantation/methods , Tissue Engineering/methods , Regenerative Medicine/methods , Cell Differentiation
18.
Pol Merkur Lekarski ; 52(2): 240-245, 2024.
Article En | MEDLINE | ID: mdl-38642361

Platelet-rich plasma is an autologous product used in restorative medicine. It contains a high concentration of platelets, which are rich in growth factors and other biologically active substances known for their ability to stimulate regenerative processes in the body. Currently, research is being conducted into the use of platelet-rich plasma in many areas of medicine. This publication provides information on the nature, mechanism of action, therapeutic properties and application of autologous platelet-rich plasma in medicine. Furthermore, ongoing investigations explore its potential in wound healing, orthopedics, dermatology, and even in dentistry, showcasing its versatility and promising outcomes across various medical disciplines. Additionally, the safety and efficacy of platelet-rich plasma therapies are subjects of continual scrutiny, aiming to refine protocols and expand its clinical utility with robust scientific evidence. The growing interest in this regenerative approach underscores its potential as a valuable tool in modern medical practice. Platelet-rich plasma therapy represents a promising avenue for personalized medicine, offering tailored treatment approaches that capitalize on the body's own healing mechanisms to promote tissue repair and regeneration.


Platelet-Rich Plasma , Wound Healing , Humans , Regenerative Medicine
19.
Biomacromolecules ; 25(5): 2701-2714, 2024 May 13.
Article En | MEDLINE | ID: mdl-38608139

Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.


Biocompatible Materials , Drug Delivery Systems , Oligonucleotides , Organophosphorus Compounds , Polymers , Regenerative Medicine , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Polymers/chemistry , Drug Delivery Systems/methods , Humans , Oligonucleotides/chemistry , Organophosphorus Compounds/chemistry , Animals
20.
Cells ; 13(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38607008

PURPOSE OF THIS REVIEW: Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS: Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY: The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.


Nanomedicine , Spinal Cord Injuries , Humans , Tissue Distribution , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Regenerative Medicine
...